Plan
模型选择
Qwen/Qwen2.5-7B-Instruct-1M
环境和工具
环境
Python3.10
虚拟环境
Conda
Accelerated PyTorch training on Mac
由于 Mac 无法使用 NVIDIA 的 GPU 加速,即 CUDA,不过好在 Apple 官网有训练加速的帮助文档
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh
训练工具
Transformers
Install
从 Conda 的 conda-forge 频道安装
conda install conda-forge::transformers
Hugging Face 的加速库,用于在单机器多 GPU or 多机器多 GPU 分布式训练
conda install -c conda-forge accelerate
Pytorch
Install
conda install pytorch torchvision torchaudio -c pytorch-nightly
train
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct-1M"
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{
"role": "system",
"content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
},
{"role": "user", "content": prompt},
]
text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]